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Abstract 

We propose a non-stationary spatial model based on a normal-inverse-Wishart 
framework, conditioning on a set of nearest-neighbors. The model, called Nearest-
Neighbor Gaussian Process with Random Covariance matrices (NN-RCM) is devel-
oped for both univariate and multivariate spatial settings and allows for fully fexible 
covariance structures that impose no stationarity or isotropic restrictions. In addition, 
the model can handle duplicate observations and missing data. We consider an ap-
proach based on integrating out the spatial random efects that allows fast inference 
for the model parameters. We also consider a full hierarchical approach that leverages 
the sparse structures induced by the model to perform fast Monte Carlo computa-
tions. Strong computational efciency is achieved by leveraging the adaptive localized 
structure of the model that allows for a high level of parallelization. We illustrate the 
performance of the model with univariate and bivariate simulations, as well as with 
observations from two stationary satellites consisting of albedo measurements. 

Introduction 

The land surface albedo is the ratio between the upward and downward refected solar ra-
diation at the Earth’s surface (NOAA, 2018). Quantifying the amount of light that hits the 
surface of the Earth without being refected is essential for understanding climate change 
and its potential impact on human health. Missions such as the National Oceanic and At-
mospheric Administration’s (NOAA) Geostationary Operational Environmental Satellites 
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(GOES) East and West have been designed to target specifcally the forecasting of extreme 
weather events (e.g foods) and the monitoring of land process analysis (NOAA, 2016). 
In light of being a sensitive indicator of environmental changes, surface albedo has been 
classifed an Essential Climate Variable (ECV) by the Global Climate Observing System 
(GCOS). 
Surface albedo can be measured by a variety of instruments including ground-based sta-

tions and satellites. Of particular importance are the observations gathered from agency 
participants in an international network called SCOPE-CM (“Sustained and COordinated 
Processing of Environmental satellite data for Climate Monitoring”). The near-global cov-
erage of participating geostationary missions is illustrated in Figure 1. This efort has so far 
produced a land surface albedo dataset that contains more than 12.5 million fles at a total 
size of more than 270 TB. In addition to albedo, other essential climate variables currently 

Figure 1: Illustration of the 70◦ viewing angle limit of the fve world satellites. Blue: 
GOES from NOAA. Green: Meteosat satellites from EUMETSAT. Red: Geostationary 
Meteorological Satellite (GMS) from JMA. Figure adapted from Govaerts et al. (2008). 

observed from the geostationary platform include: aerosol properties, cloud characteristics, 
wind speed and direction, radiation budget, wildfres, temperature profles, precipitation, 
and snow cover. The analysis of these observations presents a number of statistical chal-
lenges, including the need to handle very large spatial domains with massive numbers of 
observations corresponding to heterogeneous spatial felds and diferent sources of informa-
tion. Those challenges motivate the development of the methods presented in this paper. 
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Here we propose a model-based approach for multivariate non-stationary spatial surfaces 
that scales to large amounts of data. 
The last couple of decades have seen an explosion in the development of geostatistical 

methods producing a solid body of literature and software, see, for example, the books 
by Cressie (1993); Gelfand et al. (2010); Cressie and Wikle (2011); Banerjee et al. (2014). 
Modern geostatistical approaches provide fexible probabilistic models, coupled with learn-
ing methods, that are used to investigate inferential questions related to geographically-
referenced data. Traditionally, model-based spatial models have relied on the Gaussian 
process (GP). GPs capture the dependence due to proximity through a covariance func-
tion. For a likelihood-based approach to GPs, the bottleneck lies in the computation of 
the determinant and the inverse of the covariance matrix induced by the locations of the 
available observations. To tackle this problem most current methods take one of two ap-
proaches: exploit sparsity in the structure of the covariance matrix (e.g. Furrer et al., 
2006; Kaufman et al., 2008; Du et al., 2009; Shaby and Ruppert, 2012) or reduce the 
dimensionality of the problem by seeking representations of GPs on lower dimensional 
subspaces (e.g. Higdon, 1998; Banerjee et al., 2008; Lemos and Sansó, 2009; Cressie and 
Johannesson, 2008; Katzfuss and Cressie, 2011). In both cases the goal is to speed up 
calculations, as well as reduce the size of the objects that need to be handled and stored 
in memory when performing computations. For further information about the state of the 
art model-based geostatistics methods suitable for large data sets see Banerjee (2017) and 
Heaton et al. (2019). Nearest-neighbor GP (NNGP) Datta et al. (2016) are a particularly 
intriguing class of models, as they blend features of both the dimension reduction and the 
sparsity approaches, formalizing to a Gaussian process framework the popular likelihood 
approximation proposed in Vecchia (1988). 
In addition to the challenge of dealing with very large datasets, variables such as land 

surface albedo, observed over very large regions, exhibit a behavior that is incompatible 
with the common assumption of stationarity of the underlying spatial feld. Many of the 
approaches for large spatial felds result in non-stationary processes, even though they 
are not built specifcally to deal with such a property. One of the frst attempts to deal 
explicitly with non-stationary spatial felds is the deformation approach in Sampson and 
Guttorp (1992); Schmidt and O’Hagan (2003). In Brown et al. (1994b), non-stationarity 
occurs from the choice of using an inverse Wishart prior for the covariance matrix within the 
general multivariate normal framework. Using a diferent approach, Paciorek and Schervish 
(2006) create a new general class of non-stationary covariance functions. Partition models 
like the ones introduced in Gramacy and Lee (2008) and Kim et al. (2005) construct non-
stationary models by averaging over locally stationary processes. Further examples include 
Fuentes (2001) and Fuentes and Smith (2003) where the non-stationary process is a discrete 
or continuous weighted average of stationary models for subregions of the space. Also, like 
any reduced rank representation of a Gaussian process, process convolutions result in non-
stationary processes. An explicit model to capture the heterogeneous nature of the spatial 
feld is developed in Higdon (1998) and Lemos and Sansó (2009), where the shape of the 
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kernels is modeled as spatially-varying. A diferent approach is taken in Kirsner and Sansó 
(2020), that build a multi-resolution model with spatially-varying resolution. Finally, more 
recently, a nonparametric and non-stationary approach that looks at inferring the sparse 
elements of the Cholesky factor of an inverse covariance matrix has been presented in Kidd 
and Katzfuss (2022). 
In this paper, we start by considering a multivariate normal framework for the obser-

vations. We assume a fully unknown covariance and leverage the inverse Wishart prior 
to set our focus on developing a non-isotropic covariance structure. Then, we extend the 
model to a spatial process that is suitable for large spatial datasets by including a nearest-
neighbors idea. We denote the resulting multivariate process as Nearest-Neighbors Gaus-
sian Processes with Random Covariance Matrices (NN-RCM). We develop two inferential 
approaches. The frst version leverages the marginal posterior distribution of the model 
and allows to obtain posterior inference of the covariance parameters efciently. The sec-
ond version builds a hierarchical structure which includes fxed efects and an observational 
error. Computations for both versions are naturally geared to leverage parallelization and 
multi-threading. 
The remainder of the paper is organized as follows: In Section 2 we present the method-

ological framework of the NN-RCM model. In Section 3, we discuss the diferent features of 
the model through a number of simulated examples and comparisons with existing meth-
ods. We frst consider univariate cases. We then detail the implementation of the bivariate 
NN-RCM models and discuss the many questions regarding multivariate nearest-neighbor 
spatial processes that were unanswered by current methods. In particular, we frst describe 
the creation of multivariate neighborhoods, and then touch on the issue of misaligned 
sources of information. Finally, in Section 4, we apply the developed methodology to the 
land surface albedo dataset. We focus on the BHRiso, which stands for bihemispherical 
refectance, or white sky albedo. We look at datasets of various sizes and corresponding to 
diferent areas within the continental United States (CONUS), ftting a bivariate hierar-
chical NN-RCM model to the two dimensional vectors obtained from the retrievals of the 
GOES-East and GOES-West satellites. The goal is to extract the common surface between 
the two satellites and quantify the discrepancy surface in the process. We then illustrate 
the ability of our proposed model to handle a massive bivariate dataset by considering the 
two dimensional vectors where the frst components correspond to BHRiso and the second 
to DHR30, which stands for directional hemispherical refectance, or black sky albedo. This 
analysis covers data over the whole CONUS and amounts to about 800,000 observations 
for each component. 

Nearest-Neighbor GP with Random Covariance Matrices 

We defne a nearest-neighbors GP with random covariance matrix (NN-RCM) based on 
the normal inverse-Wishart (NIW) framework. Let S = {s1, ..., sk} be a set of locations in 
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a spatial domain D for which we have spatially dependent q-variate observations y(si), i = 
1, . . . , k stacked in the vector yS ∈ Rkq. Assume that 

yS |Σ ∼ Nkq(0, Σ), Σ ∼ IWkq(α, (α − kq − 1)Cθ), (1) 

where Nn(a, V ) denotes a n-dimensional normal distribution with mean vector a and 
covariance matrix V , IWn(α, V ) denotes an n×n-dimensional inverse-Wishart distribution 
with shape parameter α and scale parameter V , and Cθ is a kq × kq covariance matrix 
obtained from a valid cross-covariance function with parameters θ. Recall that a cross-
covariance function Kθ takes two locations, si and sj and returns a q × q covariance matrix 
where each element is the covariance between the respective components:   

cov(y1(si), y1(sj )) · · · cov(y1(si), yq(sj ))  . .Kθ(si, sj ) =  .  . . . . . . . 
cov(yq(si), y1(sj )) · · · cov(yq(si), yq(sj )) 

Notice that that E(Σ) = Cθ and that, as α →∞, Σ concentrates around its mean. Thus, 
in the limit, the model corresponds to a regular GP. Our approach leverages the inverse-
Wishart distribution of Σ to obtain a non-stationary, locally adaptive model. 
To introduce sparsity and perform conditional inference we consider an ordering of the 

locations based on their index. We can then write the joint multivariate normal density as 
the product of conditional normal densities, thus 

Yk 

p(yS ) = p(y(si)|y(s1), ..., y(si−1)). 
i=1 

Normality implies that the recursive conditional representation of y(si) can be obtained 
as a linear combination of y(s1), ..., y(si−1). Thus for a lower triangular matrix L and a 
diagonal matrix Λ, both of size kq × kq, we have that (Ikq − L)yS = e, e ∼ Nkq(0, Λ), 
where I is the identity matrix and Σ = (I − L)−1Λ(I − L)−T 

kq kq kq . To induce sparsity 
most of the elements of L can be set to zero. Vecchia’s approximation is an increasingly 
popular approach (Vecchia, 1988; Datta et al., 2016) that consists of reducing the size of 
the conditioning set to a small number, say m, of variables. Denote N(si) as the m closest 
neighbors of si in {s1, ..., si−1} ∈ S when i ≥ m, and as the set {s1, ..., si−1} when i < m. 
Denote as yN(si) the vector obtained by stacking all the observations corresponding to 
N(si). Then Yk 

p(yS ) ≈ p̃(yS ) = p(y(si)|yN(si)), 
i=1 

which corresponds to setting the elements of the matrix L outside of N(s) to zero. For 
small sample sizes, the impact of the ordering of the locations can be relevant and depend 
on the choice of covariance function and on the specifc data at hand. Guinness (2018) 
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proposes optimal ordinal strategies based on Kullback–Leibler divergence and Datta et al. 
(2016) consider root mean square predictive error to score models with diferent orderings. 
For large datasets the common choice of fully randomizing the locations is a reasonable 
default option. 

2.1 Linearization of the NIW model 

The fundamental component of our proposed model is the linearization of the the distribu-
tion of y(si), i = 1, . . . , k given its m neighbors. Let (y(si), yN(si)) be the vector obtained 
by stacking the vector of observations at location si with those at the neighboring locations 
within S. Its covariance is denoted as Σ{si,N(si)} and is equal to � � � � 

Σsi,si Σsi,N(si) Φ(si) + Γ ′ (si)ΣN(si),N(si)Γ(si) Γ(si) 
′ ΣN(si),N(si) 

ΣN(si),si 
ΣN(si),N(si) 

=
ΣN(si),N(si)Γ(si) ΣN (si),N(si) 

, 

where the subindexes indicate the corresponding subvectors, Γ(si) = Σsi,N(si)Σ
−1 ,N(si),N(si) 

and Φ(si) = Σsi|N (si) = Σsi,si − Σsi,N(si)Σ
−1 ΣN(si),si 

. This equality is known as theN(si),N(si) 

Bartlett decomposition (Le and Zidek, 2006). Denote Nh,l(M, A, B) as the distribution of 
a k × l matrix of normal elements with mean M , and such that within any column the 
covariance matrix is A ∈ Rh×h , and within any row the covariance matrix is B ∈ Rl×l . 
Using the results in Brown et al. (1994a) we have the following lemma: 

Lemma 2.1. For i = 1, . . . , k, suppose that Σ{si,N(si)} is a matrix of size (m + 1)q × 
(m + 1)q that follows an inverse-Wishart distribution IW(m+1)q(δ, V ). Then: ΣN(si),N(si) 

is independent of Γ(si) and Φ(si); ΣN(si),N (si) ∼ IWmq(δ, VN(si),N(si)); Φ(si) ∼ IWq(δ + 
m, Vsi|N(si)); and Γ(si)|Φ(si) ∼ Nm,q(VN 

− 
(
1 
si),N(si)

VN(si),si 
, VN 

− 
(
1 
si),N(si)

, Φ(si)). 

From equation (1), and using the properties of the normal and the inverse Wishart 
distributions, we have that (y(si), yN(si))|ΣS ∼ N(m+1)q(0, Σ{si,N(si)}) with Σ{si,N(si)} ∼ 
IW(m+1)q(α − kq + (m + 1)q, (α − kq − 1)Cθ,{si,N(si)}), as a sub-vector of a multivariate 
normal is normal and a sub-matrix of an inverse-Wishart is inverse-Wishart. Thus, the 
following corollary is obtained by using the defnition of the conditional distribution of two 
normal vectors together with Lemma 2.1. 

Corollary 1. For i = 1, . . . k, 

y(si)|(yN(si), Γ(si), Φ(si)) ∼ Nq(Γ ′ (si)yN(si), Φ(si))� � 
1 

Γ(si)|Φ(si) ∼ Nmq,q Cθ 
− 
,N 
1
(si)

Cθ,N(si),si 
, Cθ 

− 
,N 
1
(si)

, Φ(si)
(α − kq − 1)� � 

Φ(si) ∼ IWmq α − kq + (m + 1)q, (α − kq − 1)Cθ,si|N(si) , 

where Cθ,si|N (si) = Cθ,si − Cθ,si,N(si)C
−1 Cθ,N(si),si 

.θ,N(si) 
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Corollary 1 allows for the transformation of a model based on a covariance matrix 
likelihood into a collection of spatially localized hierarchical linear models. This series 
of local models provides adaptive weights to associate the vector of observations at each 
location with its neareast neighbors within S. It also provides locally varying covariance 
matrices. This structure is coherent with a global model for all locations featuring a fully 
unstructured covariance matrix. In addition, it intrinsically suggests a methodology to 
parallelize the calculations needed for posterior inference of the model, as the distributions 
of the matrix of weights Γ(si), and the covariance matrix Φ(si), depend only on location 
si. This ofers strong computational efciency potential. 

2.1.1 Extension to a stochastic process 

The model introduced in Corollary 1 can be extended to a valid stochastic process over 
the whole spatial domain by showing that it produces properly defned multivariate distri-
butions for any collection of locations in D. To this end we frst consider an arbitrary set 
U = {u1, ..., ub} ⊂ D\S and let N(ui) denote the neighborhood of ui in S. Then 

n nY Y 
p̃(yU |yS , ΣU ,S ) = p(y(ui)|yN (ui), Σui,N(ui)) = N(Γ(ui)yN(ui), Φ(ui)). 

i=1 i=1 

This expression is multiplied by p(yS |ΣS ), which is a multivariate normal. Integrating yS 
out of the resulting product of normals, yields p̃(yU |ΣU ,S ). For a fully general extension, 
consider V = {v1, ..., vb} ⊂ D and let U = V\S. The joint conditional density for the vector 
y(V) is Z Y 

p̃(yV |ΣV,S ) = p̃(yU |yS , ΣU ,S )p̃(yS |ΣS ) d(y(s)), 
s∈S\V 

where we integrate out the locations in S that do not appear in V. Since p̃(yU |yS , ΣU ,S ) 
and p̃(yS |ΣS ) are multivariate Normal distributions, the resulting distribution p̃(yV |ΣV ) 
is also a multivariate Normal. The covariance for two locations v1, v2 ∈ V, conditional on 
ΣV,S , is,   , if v1, v2 ∈ S Σv1,v2 

Σv1,v2 = Γ(v1)ΣN(v1),v2 , if v1 /∈ S, v2 ∈ S, ′ 
Γ(v1)ΣN(v1),N (v2)Γ (v2) + 1(v1=v2)Φ(v1), /if v1, v2 ∈ S. 

In summary, we have developed a multivariate nearest-neighbor non-stationary stochas-
tic process with a tremendous potential for parallel computations. The NN-RCM model 
creates a dedicated non-isotropic framework that leverages the advantages of multivariate 
linear regression in terms of computational efciency. As will be demonstrated in the next 
section, the possibility to marginalize the spatial random efects furthers even more the 
ability of obtaining fast posterior inference. 
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2.2 Marginal NN-RCM model 

To facilitate the estimation of θ, the parameters that defne the prior cross-covariance 
function, we obtain a marginal model where the random coefcients Γ(s) and random 
covariances Φ(s) are integrated out. The result is obtained in the following lemma. 

Lemma 2.2. The marginal distribution of y(si), i = 1, . . . , k conditional on its m neighbors 
in S and θ is � � r α−kq+mq+2 α−kq+mq+1Γ 21 2 |Vθ,{si,N(si)}|m(y(si)|yN(si), θ) = � � 

α−kq+mq+2π α−kq+mq+1 
2Γ 2 |(Vθ + S){si,N(si)}| 

α−kq+mq+1 
2|(Vθ + S)N(si)|× ,α−kq+m 

2|Vθ,N(si)| 

where Vθ = (α − kq − 1)Cθ and S = y(S)y(S) ′ . 

Proof. Recall that m(y(si)|yN(si), θ) = m(y(si), yN(si)|θ)/m(yN(si)|θ). As (y(si), yN(si))|Σ, θ ∼ 
N(m+1)(0, Σ{si,N (si)}) and Σ{si,N (si)} follows an inverse-Wishart distribution, the result can 
be obtained using the properties of NIW densities. 

Further simplifcation of the expression in Lemma 2.2 can be obtained with the approx-
imation � � 

α−kq+mq+2 r
Γ 2 α − kq + mq + 2 � � ≈ − 1. 

α−kq+mq+1 2Γ 2 

that is important for numerical stability for large k. On the other hand, To obtain an 
approximation to the marginal distribution for all the available observations we let 

kY 
m(yS |θ) ≈ m̃(yS |θ) = m(y(si)|yN(si), θ). 

i=1 

m̃(y(S)|θ) can be used as a likelihood for θ. Multiplication by a prior density π(θ) yields 
an approximate posterior distribution for θ that can be explored through sampling or 
maximization. Notice that computing the marginal involves, for each location, the deter-
minants of four matrices of dimensions no larger than (m + 1)q × (m + 1)q. Such local 
computations can be performed concurrently, enabling the possibility of important speed 
gains through straightforward parallelization. As with the implementation of NNGP, the 
algorithm is linear in the number of observations k but cubic in terms of the number of 
neighbors m. Additionally, the order of computation O(km3q3) is cubic in terms of the 
number of variables q, making the model most appropriate for small dimensions. 
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2.2.1 Prior distribution of α and θ 

The parameters that constitute θ depend on the choice of cross-correlation function used 
for the model. We delay the discussion of the prior cross-covariance model to Section 3.2. 
In the univariate setting the Matérn family has become the most popular choice of spatial 
covariance function due to its fexibility. The Matérn family depends on two parameters, 
the range parameter ν and the smoothness parameter κ: � �κ � � 

2κ−1 √ d √ d 
Cν,κ(d) = 2κ Kκ 2κ ,

Γ(κ) ν ν 

where Γ is the gamma function and Kκ is the modifed Bessel function of the second 
kind. In addition, we also include a nugget ξ2 to account for the initial lag at the zero 
distance. Finally, we multiply by the partial sill σ2 to obtain the prior covariance function 
Cθ(d) = σ2(Cν,κ(d) + ξ2), where θ = (ν, κ, ξ, σ2). 
The difculty in imposing valid priors for the range parameter ν in a GP setting is 

discussed in Berger et al. (2001) and Kazianka and Pilz (2012) whose focus is to use priors 
that produce a proper posterior distribution. The maximization aspect of the marginal 
model also requires attention, as there is no guarantee that the maximum of the marginal 
will not occur with ν tending to zero or ∞. Following a similar argument as in Gu and 
Berger (2016), we take p(ν) such that p(ν) → 0 when ν → 0 or ν →∞. In fact, our default 
choice of prior for ν a is a gamma distribution with mean equal to the smallest observed 
distance between two datapoints and shape parameter greater than 1. For ξ2 and σ2 we 
consider independent difuse inverse gamma distributions. Finally, a natural choice for the 
prior distribution of the degrees of freedom α is the Pareto(xm, p) distribution which has 
a truncated domain and has very thick tails. By setting the scale parameter xm at the 
minimum possible value for the degrees of freedom, we ensure that the distribution is only 
valid on the proper interval. For the shape parameter p, a value of p = 1 is recommended 
as it results in a distribution with infnite variance. 

2.2.2 Posterior predictive distribution 

The approximate posterior marginal likelihood model results in samples or point estimates 
of the cross-covariance parameters, say θ ∗ . Inference for the random feld y(s), is performed 

∗by drawing samples from the posterior predictive distribution for any location, say s in 
D. To obtain a sample of the posterior predictive distribution of y(s ∗) recall the results in 
Corollary 1 and sample Φb(s ∗) as � � 

Φb(s ∗ ) ∼ IWmq α ∗ − kq + (1 + m)q, (α ∗ − kq − 1)Cθ ∗ ,s ∗|N(s ∗) 

where b = 1, ..., B, denotes the sample replicate. We then sample the matrix Γb(s ∗) as � � 
1 

Γb(s ∗ )|Φb(s ∗ ) ∼ Nmq,q C−1 
∗)Cθ ∗ ,N(s ∗),s ∗ , C−1 

∗), Φb(s ∗ ) ,θ ∗ ,N(s θ ∗ ,N(s(α∗ − kq − 1) 
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for b = 1, . . . , B. Finally, using the two former sets of samples, together with the neigh-
∗boring observations, we generate a set of predictions at location s as, 

yb(s ∗ )|(Φb(s ∗ ), Γ ′ (s ∗ )) = Γ ′ (s ∗ )yN(s ∗) + ϵ(s ∗ ), ϵ(s ∗ ) ∼ Nq(0, Φb(s ∗ )). 

Consequently, the samples y1(s ∗), ..., yB (s ∗) provide inference for the random feld of in-
terest, together with quantifcation of the predictive variability. Notice that, thanks to the 
defnition of N(s ∗), the predictive distribution does not depend on the ordering of S. 

2.3 Hierarchical NN-RCM model with covariates 

The NN-RCM model considered so far assumes that the spatial observations have zero 
mean. To model the complexities of realistic multivariate random felds we consider a 
hierarchical extension of the NN-RCM that incorporates fxed efects, linear combinations 
of spatial random efects and observational errors. Thus we formulate the model 

y(s) = X(s)β + Aw(s) + ϵ(s) 

where X(s) is a q ×p matrix of spatially varying covariates, β is the p-dimensional vector of 
fxed efects coefcients, A is a q×q known nonsingular matrix and w(s) is a latent q-variate 
NN-RCM process, and ϵ(s) is a q-variate vector of observational errors. A hierarchical 
formulation of the model is given as: 

y(s)|β, w(s), τ 2 ∼ Nq(X(s)β + Aw(s), τ 2Iq) 

w(s)|Γ(s), Φ(s) ∼ Nq(Γ(s)wN(s), Φ(s))� � 
1 

Γ(s)|Φ(s) ∼ Nmq,q C−1 Cθ,N (s),s, C−1 , Φ(s)θ,N(s) θ,N(s)α − kq − 1 

Φ(s) ∼ IWmq(α − kq + (1 + m)q, (α − kq − 1)Cθ,s|N (s)), 

q2With priors β ∼ Np(0, s I) and τ 2 ∼ 
Q 

IG(τ 2|aτ , bτ ).β i=1 i 

2.4 Posterior inference for α and θ 

To sample α and θ, we leverage the marginal likelihood obtained for the marginal model. 
By following the same derivation, the marginal likelihood for w(s) can be used in the 
Metropolis step. Therefore, by removing the random efects, the likelihood involving α 
and θ is reduced to � � α−k+m+1 α−k+m+1α−k+m+2 2 2Γ |Vθ,{si,N(si)}| |(Vθ + S)N(si)|2 m(w(s)|wN(s), θ, α) ∝ � � ,α−k+m+2 α−k+mα−k+m+1Γ 2 22 |(Vθ + S){si,N(si)}| |Vθ,N(si)| 

′ where Vθ = (α − k − 1)Cθ and S = ww . 
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It is worth noting that sampling α and θ can be subject to slow mixing and result in a 
signifcant increase in computation time. A possible strategy to accelerate the inference is 
to sample α and θ in only a fraction of the total number of iterations. Taking this strategy 
to the extreme, this parameters can be held fxed at the point estimates obtained from 
the marginal approach for the duration of the algorithm. The computational complexity 
of one iteration is identical to the marginal approach, scaling in cubic terms with respect 
to the number of neighbors m and the number of variables q. 

2.4.1 Misalignment of observations 

In many practical problems involving multivariate observations we have to deal with incom-
plete or missing values at some locations. An extreme case example is given in Section 4, 
where the observations from two diferent satellites are slightly misaligned, implying that 
at most locations only one of the two components is observed. Missing observations can 
readily be handled within the model, as it relies on a valid cross covariance structure. Thus, 
proximity of observations from any component can be used for prediction of any other com-
ponent. To achieve this is it is important to make sure that a number of observations from 
all components are included in every neighborhood. 
Our approach consists of introducing an ordering of the components of y(s). Let J(si) 

be the set of indexes corresponding to components that are observed at location si. Let qi 
indicate the number of elements in J(si). We defne neighbors as we did previously based 
on the m closest locations for each variate. We denote the corresponding set for the j-th 
component as Nj (si). Thus, 

kY Y 
p̃(yS ) = p(yj (si)|yNj (si)). 

i=1 j∈J(si) 

Notice that the m neighbors from each q-variate need not come from the same set of m 
locations. Figure 2 illustrates how the neighborhoods are created using a small example. 
Assuming that we have 5 observed locations with two components shown in orange and 
purple. The ordering is from left to right and the components are ordered sequentially. 
Therefore, to create a neighborhood of size 6 for the second component of location s4, 
which is denoted in black in the right plot of Figure 2, we would select the three closest 
previous observations from component 1 and component 2 separately. We denote these 
in red and together, they form the neighborhood of the observation. It is important to 
highlight that the neighborhood does include the frst component of the observed location. 
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Figure 2: Creation of a bivariate neighborhood using the same number of neighbors from 
each component. 

Simulation Study 

We present results of a simulation study in order to explore the performance of the marginal 
and the hierarchical version of the proposed NN-RCM model. We obtain an assessment of 
the model ft by splitting the sample into a training set and a validation set, and computing 
four diferent scores calculated for each component of the feld. 
The Predictive Mean Squared Error (PMSE) is defned as 

vX1 
PMSE = (yj (si) − ŷj (si))

2 , 
v 

i=1 

where ŷj (si) corresponds to a sample of the predictive posterior distribution at the valida-
tion set location si, i = 1, . . . , v, for the j-th component. The Continuous Rank Probability 
Score (CRPS) (Gneiting and Raftery, 2007) is defned as 

B B BX XX1 1(i) (i) (l)
CRP S(s) = |ŷ (s) − yj (s)| − |ŷ (s) − ŷ (s)|,j l jB 2B2 

i=1 i=1 l=1 

(i) (l)
where ŷ (s) and ŷ (s) i, l = 1, . . . , B are samples from the posterior predictive for thej j 
j-th component at loction s. The CRPS is computed for all the locations in the validation 
set and then averaged. The Posterior posterior predictive loss criterion (PPLC) (Gelfand 
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and Ghosh, 1998) is defned as 

Xv X v
p 

D  = var(ŷ 2 
p j (si)) + (yj (si) − E(ŷ

  j (si))) . 
p+ 1

i=1 i=1 

Finally, we consider the 95% predicted interval coverage (Coverage), defned as. 

Xv1 
Coverage = 1 1(0.025v)  

 
(0.975v) ,

v {yj (si)≥y (si)} {yj (si)≤y (s )}j j i
i=1 

where the boundaries of the interval are given by the 2.5% and 97.5% quantiles of the 
predictive sample at location sj for the j-th component. 

3.1 Univariate simulation 

We generate a dataset from a Gaussian Process with a Matérn covariance function with 
smoothness parameter κ = 1/2. We obtain n = 2500 observations y(si) in a 10 × 10 square 
using the covariance parameters θ = (σ2, ν) = (1, 1), the partial sill and the range. We 
add white noise according to a N(0, 0.52) distribution. Finally, we split the sample evenly 
into a training set and a testing set. 
We ftted the simulated data using the marginal model proposed in Section 2.2, as 

well as the hierarchical model presented in Section 2.3. We used a neighborhood of size 
m  = 10 and an inverse gamma prior with the partial sill σ2. As suggested in Section 2.2.1 
we use a gamma prior with hyperarameters based on the smallest observed distance of 
the training dataset and a Pareto distribution with low information level is used on the 
degrees of freedom α. Using the base R optim function, we obtain posterior estimates 
for θ and α. Starting the optimization at some default values where all parameters are 
equal to 0.5, the process converges after 50 iterations. We compare our results to the 
ones obtained using the R packages spNNGP and SpConjNNGP that implement Bayesian 
versions of the nearest neighbor Gaussian process using, respectively, MCMC and cross-
validation using a marginal model (Finley et al., 2017). We also compare our results to the 
maximum likelihood implementation of nearest neighbor Gaussian process as available in 
the R package BRISC (Saha and Datta, 2019). 
Repeating the experiment 100 times, we obtain quantitative comparisons of the fve 

models as presented in Figure 3. Using the four proposed performance indicators as avail-
able for each method, we observe generally small diferences between the four predictive 
models. We should note that all methods have generally high coverage rate which can be 
an indication of high uncertainty. Further specifc tuning of each model for each replicate 
was not investigated but could potentially lead to more reasonable coverage value. 
The runtimes for the analysis performed using a Razer Blade 15 with Intel(R) Core(TM) 

i7-10750H Processor with 16.0GB of RAM are detailed in Table 1. We notice that the 
runtime of the marginal NN-RCM model is afected by the stopping rule of the optimization 
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Figure 3: Scores comparison for the univariate simulation under the fve studied models. 

Model Inference Prediction 
marginal NN-RCM 5s 2s 
hierarchical NN-RCM 4s 2s 
conjugate NNGP 50s -
MCMC NNGP 3s 9s 
BRISC 16s 75s 

Table 1: Runtime comparison for the univariate simulation under the fve studied models. 

process. Using a very large convergence tolerance or limiting the number of iterations can 
decrease the runtime artifcially. For the results presented here we rely on the default 
stopping rule of the R package optim, which uses a convergence tolerance of 1e − 08 and 
a total number of iterations of 100. Finally, we note that the starting values can also have 
a small impact on the runtime of the marginal NN-RCM model. For the simulation, we 
made an honest attempt at keeping the starting values within a reasonable guess, similar 
to the grid of values given to the spConjNNGP function. In conclusion, the exploration 
of the univariate simulated dataset reveals that both implementations of NN-RCM are 
competitive with state of the art NNGP models, with some advantages in terms of showing 
less local variability and faster runtime to obtain predictive surfaces. 
A sensitivity analysis of the choice of the number of neighbors as well as the smoothness 
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parameter of the covariance function is presented in the supplementary material. For 
simulations with diferent range parameters, we see that the model is not sensitive to the 
size of the neighborhood. Moreover, the predictive power of the model is not impacted by 
the neighborhood size as well as the chosen smoothness parameter of the Matérn covariance 
function. 

3.2 Bivariate Simulation 

The formulation of a NN-RCM requires the specifcation of a cross-covariance function. 
Genton and Kleiber (2015) gives a thorough overview of multiple parametric models for 
spatial modeling. We consider three methods in detail and discuss their specifc implemen-
tation. The frst choice is a separable model where the cross-covariance matrix is the result 
of the Kronecker product between an inter-component covariance matrix T and a spatial 
covariance matrix generated from a covariance function C. That is, the covariance between 
the variate i and j for two locations s1 and s2 can be written as Cij (s1, s2) = tij ∗ C(s1, s2). 
The second option corresponds to the linear model of coregionalization, consisting of the 
combination of univariate random felds using a linear representation. Assuming the linear 
combinations can be represented by the nonsingular matrix A, the cross-covariance is then 
defned as A ′ C∗A, where C∗ is a block-matrix where each block represents the covariance 
matrix obtained from the respective univariate covariance function Ck. Any element of the 
cross-covariance matrix follows the equation below, 

qX 
Cij (s1, s2) = Ck(s1, s2)aikajk. 

k=1 

Finally, we consider a multivariate extension of the Matérn covariance function. Gneiting 
et al. (2010) and Apanasovich et al. (2012) defne a fexible family of Matérn cross co-
variance functions that depend on correlation coefcients ρij , on smoothness parameters 
κij and on range parameters νij . These are subject to constraints that present inferential 
challenges. A parsimonious option is given by the case where the range parameter ν is the 
same for all components. This ofers a largely simplifed implementation of the function 
that results in the cross-covariance being 

Cij (s1, s2) = ρij σiσjM(s1, s2|(κi + κj )/2, ν), 

where M(·|·) is the univariate Matérn covariance function for two locations s1 and s2, 
ρi1 = 1 . The only condition, that is both sufcient and necessary, for the validity of this 
cross-covariance function is !1/2 !1/2d dΓ(κi + ) Γ(κj + ) Γ(1 (κi + κj )2 2 2|ρij | ≤ ,

Γ(κi) Γ(κj ) Γ(1 (κi + κj ) + d 
2 2 
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where d is the dimension of the space. On the Euclidean plane, where d = 2, this condition 
reduces to 

(κiκj )
1/2 

|ρij | ≤ .1 (κi + κj )2 

A slightly more general version, specifc to the bivariate case, allows diferent range pa-
rameters per component, as long as ν1 + ν2 ≥ 2ν12. Our default implementation assumes 
ν1 + ν2 = 2ν12. 

3.2.1 Simulation 1 

The frst bivariate example that we discuss consists of two surfaces generated using a cross-
covariance Matérn function. We use the package RandomFields to generate the datasets 
(Schlather et al., 2021, 2015). We use range and smoothness parameters that vary greatly 
between the two surfaces. Moreover, we include a correlation of -0.5 between the two sur-
faces and spatially-independent noise to each observation. For the cross-validation, we use 
a 50-50 split on the 2,500 simulated observations. We used four diferent cross-covariance 
functions to ft a marginal NN-RCM to the simulated data: separable, co-regionalization, 
parsimonious Matérn, and fexible Matérn. As was the case for the univariate simulation, 
we use the package optim to estimate the parameters of the cross-covariance functions. 
The size of the neighborhood was chosen to be m = 20, where each observation has an 
equal number of neighbors (10) from each component. The priors for the parameters also 
include an inverse gamma distribution for the partial sills and cross-covariance terms. We 
use gamma distributions for the range parameters based on the smallest distance observed 
for each component. Finally, we use a Pareto distribution for the degrees of freedom with 
scale parameter 1 which results in a prior with infnite variance. 
A quantitative comparison of the diferent approaches using the same scoring functions 

calculated for the univariate simulation is reported in Table 2. We observe that the scores 
are very similar for all four approaches. We notice that the coregionalization approach 
requires substantially longer time to converge than any of the other three approaches. 
The runtimes reported in Table 2 only account for the optimization process to obtain the 
posterior estimates. 
The extension to the multivariate case is more complex and worth noting that very few 

multivariate models are available for comparison. Such is the case of the spNNGP package 
which does not currently ofer a multivariate implementation of the NNGP model. We 
resort to comparing our results to the spBayes package which, given a set of knots, fts 
predictive Bayesian Gaussian Processes for spatial regression models (Finley et al., 2015). 
The limitations of the knots was apparent for the surface of the second component as the 
predictive process struggled to fully recover the true surface. This is represented in the 
PMSE, CRPS and PPLC scores of the replicated experiments in Figure 4. We note that 
the fnal indicator, the coverage rate, is reasonable for both surfaces under both models. In 
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Model Runtime Component PMSE CRPS PPLC Coverage 
Coregionalization 

Parsimonious 

Flexible 

Separable 

49.01s 

6.98s 

8.05s 

6.58s 

Component 1 
Component 2 
Component 1 
Component 2 
Component 1 
Component 2 
Component 1 
Component 2 

0.0503 
0.6838 
0.0522 
0.6884 
0.0507 
0.6749 
0.0643 
0.7063 

0.1674 
0.4658 
0.1680 
0.4657 
0.1673 
0.4617 
0.1772 
0.4706 

115.66 
418.68 
116.42 
415.16 
116.77 
417.37 
121.98 
419.81 

1.0000 
0.9754 
1.0000 
0.9754 
1.0000 
0.9754 
1.0000 
0.9815 

Table 2: Scores comparison between the four possible cross-covariance function choices 
for the bivariate marginal NN-RCM model. The scores are computed for each simulated 
surface individually. 

terms of runtime, obtaining the posterior inference, the spBayes package took 2.35 minutes 
compared to the bivariate NN-RCM model which took 6.98 seconds. 

(a) PMSE (b) CRPS 

(c) PPLC (d) Coverage 

Figure 4: Scores comparison for the bivariate replicated simulations under the two studied 
models. 
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4 

3.2.2 Simulation 2 

Our second simulation consists of transforming the data previously simulated using the 
linear equation � � 

1 0 
y(s) = w(s). 

1 1 

The objective of this second simulation is to demonstrate the ability of the hierarchical 
NN-RCM model to recover the spatial random efects denoted by w(s). Using the same 
priors described for the frst simulation and the posterior estimates as starting values, we 
implement the hierarchical NN-RCM model with the parsimonious Matérn cross-covariance 
function. For computational efciency, we hold the degrees of freedom α and the range 
parameters fxed to the values obtained for one of the simulation in section 3.2.1. Figures 5 
and 6 show the posterior mean of w1(s) and w2(s). This confrms that we are able to 
recover the spatial random efects accurately given the two transformed surfaces y1(s) and 
y2(s). 
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Figure 5: Comparison of the frst true surface (no noise) and predicted surfaces from the 
bivariate NN-RCM models. 

Albedo Application 

To illustrate the behavior of the NN-RCM model, we selected data from the GOES-East 
and GOES-West satellites for the frst day of the month of July 2000. The data are retrieved 
at a resolution of 4km by 4km. By restricting our analysis to the continental United States 
(CONUS), the result is a dataset with approximately 665 000 observations per day. As 
previously noted, the albedo product is captured by a percentage of the weight between 
upward and downward radiant infuxes. In order to transform the range to be applicable 
for the GP model, we use a logit transformation on the data, after truncation of values 
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Figure 6: Comparison of the second true surface (no noise) and predicted surfaces from 
the bivariate NN-RCM models. 

above 0.5. Figure 7 shows a subset of size 10,000 for the July 1st, 2000 data. Points colored 
bright yellow are likely to correspond to areas with dense cloud covering. 
As a frst demonstration we apply the hierarchical bivariate spatial model developed 

in section 2.3 to an area restricted to the state of Colorado. The hierarchical bivariate 
model allows us to merge the observations from the two satellites using a common surface 
w(s) and a diferential surface d(s). Then, in light of the results obtained, we continue 
our analysis by applying the univariate hierarchical NN-RCM model to the whole CONUS 
by stacking the information obtained from both satellites. Finally, we conclude with an 
example of the application of the marginal bivariate NN-RCM model. We again apply it 
to the whole CONUS area but focus on the joint learning of BHRiso and DHR30. 

4.1 Bivariate surface albedo (Colorado) 

The model that we seek to use to analyse the albedo observations relies on two spatial 
processes, a common surface and a diferential surface. Let s be any location in our space 
of interest, we denote the two possible observations from the GOES-East and the GOES-
West satellites as yE(s) and yW (s). We attempt to reconcile them to obtain a common 
surface albedo represented by the spatial process w(s) and a discrepancy quantifcation 
from the process d(s). The model we use is therefore denoted as � � � �� � � � 

f(yE (s)) 1 0 w(s) ϵ1(s)= X(s)β + + ,
f(yW (s)) 1 1 d(s) ϵ2(s) 

where f is any appropriate transformation to the real line, X(s) and β represent the 
covariates and fxed efects to be included, and ϵi ∼ N(0, τ2), for i = 1, 2. The covariates i 
included in X(s) are an intercept and the longitude and the latitude of the location s. 
The choice of having common fxed efects β for both sources of information refects our 
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Figure 7: Subset of surface albedo observations from July 1, 2000. 

assumption that the efects of the longitude and latitude on the albedo assessments are not 
impacted by the satellite retrieval process. 
As an initial exploration, we focus our analysis on the state of Colorado where the 

satellites GOES-East and GOES-West contain around 18,000 and 11,000 observations re-
spectively. To capture the predictive ft of the model, we frst split the data into two equal 
subsets which we refer to as the training set and the testing set. We will frst ft the model 
on the training set only to evaluate the predictive power. Then, we will ft the model once 
more on the full 29,000 datapoints to obtain high resolution posterior predictive surfaces. 
Note that despite the relatively small size of the data in this example, the expected runtime 
of the multivariate predictive process as implemented in the SpBayes package prevented 
us from performing a comparison analysis between available methods. 
To ft this model as efciently as possible, we proceed with a multi-tier approach. First, 

we discuss the transformation f and the fxed efects. Second, we look at the univariate 
marginal nearest-neighbor Gaussian processes with random covariance matrices (NN-RCM) 
models used to obtain point estimates for the covariance parameters and the degrees of 
freedom. Since the bivariate marginal model does not output point estimates for linear 
combinations of the observations, we use the univariate marginal NN-RCM model in a 
two-step process. Finally, we use the bivariate hierarchical NN-RCM model to obtain the 
posterior inference on w(s) and d(s). Using these posterior samples, we obtain posterior 
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Covariate Mean St. dev. 
Intercept -2.4466 0.0820 
Longitude -0.0017 0.0005 
Latitude -0.0032 0.0015 

Table 3: Posterior mean of the fxed efects of the stacked albedo linear model for the state 
of Colorado. 

predictive samples for both w(s) and d(s) which help us understand the uncertainty of our 
predictions and the diference between the two GOES satellites. 

4.1.1 Univariate marginal model tiered approach 

As we previously explained, the albedo observations are percentages and frst need to be 
transformed. We used a logit transformation to transform the percentages to the real 
line. We then use a univariate linear model on the stacked training observations to remove 
the average fxed efects. Table 3 summarizes the posterior mean and standard deviation 
for the fxed efects obtained using the lm function in R. From these, we can remove the 
predicted expected value from our transformed observations and continue with our spatial 
analysis. 

∗ ∗Denote the transformed and centered observations as yE (s) and yW (s). The bivariate 
marginal NN-RCM model is ftted on two spatial processes that correspond to each source 
of information. Therefore, in this scenario, the point estimates that the bivariate marginal 
NN-RCM model obtains do not correspond to the covariance parameters for w(s) and 
d(s). Instead, we suggest using a two-step method to obtain an approximation of the those 
covariance parameters. 
First, we ft the univariate marginal model using the observations from only the frst 

satellite, GOES-East. To maintain an acceptable runtime for each of the increasingly larger 
domain, we chose to fx the number of neighbors to 10. The runtime for this frst step was 

E(b)
19.75 seconds. Using the posterior inference obtained, we extract predictions yW (s), for 
b = 1, ..., 1000, for each the observed locations s of the second satellite, GOES-West. This 
second step took 3.08 seconds. Finally, we ft a second univariate marginal NN-RCM model 
on the diference between the observed value and the average predicted value for the second 
source: 

1000 E(b)X yW (s) yW (s) − ∼ NN-RCM(0, Cθ). 
1000 

b=1 

This last step took 9.89 seconds for an overall runtime of 33 seconds. Together, the two 
models supply us with approximates for ξw 

2 , ξd 
2, σw 

2 , σd 
2, νw, νd, αw, αd. We can therefore use 
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Parameter Notation w(s) d(s) 
Bivariate 
estimate 

Degrees of freedom 
Range 
Partial Sill 
Correlation 
Nugget 

αw, αd, α 
νw, νd, ν 
σ2 , σ2 
w d 

ρwd 

ξ2 , ξ2 
w d 

9028 
0.2274 
0.1832 
-

0.1726 

5751 
0.3081 
0.1054 
-

0.9117 

29557 
0.2678 
-

-0.0430 
-

Table 4: Point estimates for the covariance parameters obtained from the multi-tiered 
approach using the univariate marginal NN-RCM models for the state of Colorado. The 
last column shows the aggregated values which are used in the bivariate model. 

the proxy nugget estimates and the partial sill estimates directly. For the range parameter, 
since the bivariate model uses a common range, we have multiple options. We decided to 
use the average of the two estimates, but another choice was to use the smallest of the 
two ranges. Finally, for the degrees of freedom, we can obtain the point estimate for α by 
adding the two estimates. We therefore have α = 2 ∗ (αw + αd), where the estimate must 
be multiplied by 2 to account for the misalignment of the satellites. More precisely, the 
two satellites do not share the same assessment grid which results in a bivariate dataset 
with exactly 50% missing data. 
This methodology does not provide us with an estimate for the cross-covariance term of 

the Matérn covariance function, ρwd. A good approximation of the parameter is obtained 
by computing the empirical correlation between the posterior predictive averages for the 
second satellite and the diference between the albedo assessments and the posterior pre-
dictive means. Carrying this calculation and adjusting for the smoothness parameters, we 
obtain an estimate of ρwd = −0.0430. See Table 4 for the complete list of point estimates 
obtained from the univariate marginal NN-RCM models approach. 

4.1.2 Bivariate hierarchical model 

The fnal step of our spatial inference analysis consists of ftting the bivariate hierarchical 
NN-RCM model to y ∗E (s) and y ∗W (s). The frst few steps have allowed us to reduce the
model to the following, � � � �� � � � 

 y ∗E (s) 1 0 w(s) ϵ1(s)
∗ = + ,

y W (s) 1 1 d(s) ϵ2(s)

where ϵi ∼ N(0, τ2i ), for i = 1, 2. Therefore, we seek to sample the spatial random efects
 w(s) and d(s) and the observational errors τ2i using the bivariate hierarchical NN-RCM 

model with the point estimates as outlined in Table 4 for the parsimonious Matérn cross-
correlation function. Overall, the posterior inference took 2.53 minutes to complete. Using 
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Satellite Model PMSE CRPS PPLC Coverage 
GOES-E Bivariate NN-RCM 0.0424 0.1067 814.89 0.9826 

Univariate NN-RCM 0.0365 0.1651 3567.11 1.0000 
GOES-W Bivariate NN-RCM 0.0496 0.1506 1712.83 0.9967 

Univariate NN-RCM 0.03401 0.1623 2205.35 1.0000 

Table 5: Scores comparison for the hierarchical NN-RCM model and the univariate 
marginal NN-RCM model for the state of Colorado. The scores for the GOES-East and 
GOES-West testing sets are reported individually. 

these posterior samples, we complete the fnal step of the cross-validation analysis by 
sampling the posterior predictive distribution of the testing set locations. With those, 
we can compute the four scoring values and compare them to using a univariate NN-
RCM model on the stacked dataset. Table 5 summarizes the results and shows that the 
bivariate model does indeed outperform its univariate counterpart. While the predictive 
mean squared error is marginally smaller for the univariate model, we reduce the predictive 
variability by using both sources of information. 

4.1.3 High resolution predicted surface 

Repeating the same steps but for the full state of Colorado dataset, we again obtain 
posterior samples for the bivariate hierarchical NN-RCM model. Using these samples 
we generate posterior predictive samples for a high resolution grid. Figure 8 shows the 
posterior mean for the spatial random efect w(s) and the albedo predictions on the original 
scale. 
We are particularly interested in the spatial surface d(s) to learn about the diferences 

between the two satellites GOES-East and GOES-West. Figure 9 shows the posterior 
predictive mean for d(s) and the posterior predictive diference between yE(s) and yW (s) 
on the original scale. That is, for a location s, we plot the average of the following quantity: 

d ∗ 
b (s) = f−1(wb(s) + db(s) + X(s)β) − f−1(wb(s) + X(s)β), 

where b = 1, ..., 1000. 
We immediately notice that the discrepancy between the two satellites presents irregular 

spatial patterns that correspond to the Colorado Rocky Mountains. These can not be 
attributed to simple efects of longitude/latitude or the satellite view angle. By looking 
at the 90% posterior predictive intervals at each location s, we note that, for over 99% 
of the locations, the estimated discrepancy feld overlaps with 0. This indicates that any 
signifcant diferences between the two satellites are very localized. At a regional or global 
scale, those diferences are dominated by the variability of the albedo felds. 
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Figure 8: Spatial random efects w(s) and albedo predictions from the bivariate hierarchical 
NN-RCM model for the state of Colorado. 

In the next section, taking into consideration the small global signifcance of the feld 
d(s), we instead look at the full CONUS area by stacking the information from both 
satellites. This will allow us to obtain a unifed surface and demonstrate the computational 
efciency of the presented method. 
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Figure 9: Spatial random efects d(s) and posterior predictive mean of yE (s) − yW (s) from 
the bivariate hierarchical NN-RCM model for the state of Colorado. 

4.2 Univariate Hierarchical Model application 

By stacking the albedo information from both satellites, we obtain a dataset with approx-
imately 800,000 datapoints. Our approach to obtain the posterior inference is to proceed 
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Figure 10: Posterior predictive average over CONUS obtained from the univariate hierar-
chical NN-RCM model. 

in two steps. First, we will use the marginal NN-RCM model to recover point estimates 
for the degrees of freedom and the spatial parameters of the model. Second, we apply the 
hierarchical model to obtain the full posterior inference for the spatial random efects. The 
objective in using the two steps is to reduce the overall computational burden of handling 
this large dataset. The total runtime for both steps was 17 minutes. The optimization of 
the marginal likelihood took 14 minutes and the posterior inference for the spatial random 
efects took 3 minutes. In comparison, the spConjNNGP method ran in 15 minutes while 
the BRISC method returned a memory allocation error. Therefore, we conclude that the 
proposed method is competitive in handling larger datasets efciently. 
We illustrate the inference obtained from the observations in Figure 10 which shows 

the posterior predictive mean obtained from ftting the univariate hierarchical NN-RCM 
model. 

4.3 Bivariate Marginal Model application 

For the fnal application, we use the bivariate marginal model to reconcile two albedo 
measures: BHRiso and DHR30. In this scenario, we are stacking the information from both 
the GOES-E and GOES-W satellites for each variable. Therefore, we have no misaligned 
observations as both albedo assessments are available for the same set of locations for 
each source of data. In total, we have about 800,000 locations, each with the BHRiso 
and DHR30 observations. The objective for this case is to obtain the posterior predictive 
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Parameter Notation w(s) d(s) 
Bivariate 
estimate 

Degrees of freedom 
Common Range 
Partial Sill 
Correlation 
Nugget 

α 
ν 
σ , σ
ρwd 

ξ , ξ

2 
d

2 
d

2 
w

2 
w

0.2417 
-

0.0456 

0.2256 
-

0.0280 

1661086 
1.2000 
-

0.9865 
-

Table 6: Point estimates for the covariance parameters obtained from bivariate marginal 
NN-RCM models 

surfaces for each component while leveraging the additional knowledge of jointly modeling 
both sources of highly correlated information. 
Proceeding similarly as what was done in the example for the state of Colorado, we 

initially ft and subtract linear fxed efects based on longitude and latitude. Next, the 
bivariate marginal model was implemented for the parsimonious Matérn cross-covariance 
function using the available optimization routine in R. Starting with default values where 
each parameter is 0.5, the runtime to obtain the point estimates was 1.65 hours. Table 6 
summarizes the point estimates obtained from the bivariate marginal optimization routine. 

After obtaining the inference for the cross-covariance function, we are able to sample 
the posterior predictive distribution for both components. The runtime for the predictive 
step was around 1.5 hours. It is worth noting that a non-negligible portion of the runtime 
is spent building the neighborhoods for the high resolution predictive grid. Figures 11 and 
Figure 12 show the posterior predictive means of each component after ftting the bivariate 
marginal model. As noted by the high correlation between the components, on a global 
scale, the two albedo assessments are very similar. 
The two quantities we have studied, BHRiso and DHR30, are integral to defning how 

light is refected by an opaque surface. BHRiso (white sky albedo) is the refectance of the 
surface under difuse illumination while DHR30 (black sky albedo) is the refectance of the 
surface under direct illumination at a 30 degree angle. However, both of these quantities 
are merely theoretical, they do not quantify the true refection of the land surface. The 
true “blue sky albedo”, α, may be calculated by a simple linear relationship of these terms 
as α = (1-D) · DHR30 + D · BHRiso where the coefcient D is the proportion of difuse 
illumination. D may be estimated on a pixel by pixel basis utilizing a radiative transfer 
simulation model driven by the bidirectional refectance distribution function defned by 
BHRiso and DHR30 as well as covariates such as solar angles determined by pixel time and 
location and aerosol load characteristics. The output from the bivariate marginal model 
illustrated in this section will contribute to the accuracy of the downstream blue sky albedo 
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Figure 11: Predictions of BHRiso for CONUS from Bivariate Marginal NN-RCM model 

assessment. 

Conclusions and future work 

We have demonstrated the pertinence of a non-isotropic nearest-neighbor hierarchical spa-
tial model and discussed its implementation for both univariate and multivariate observa-
tions. We presented simulated examples and real life cases to illustrate how the model was 
implemented. 
Our main application of the NN-RCM considered surface albedo observations from 

NOAA’s GOES East and West. The importance of surface albedo stems from its potential 
to display the rate of climate change. The objective of the study was to quantify the 
discrepancy between GOES-East and GOES-West and obtain a unifed albedo feld for 
the whole CONUS. While the two satellites seem similar on a global level, for smaller 
areas, subtle diferences are visible. We used the bivariate hierarchical NN-RCM model to 
quantify such diferences, using a common albedo surface w(s) and a discrepancy surface 
denoted d(s). We found that d(s) is signifcant only for very localized areas. The conclusion 
is that the global variability of the albedo observations is too large to efectively quantify 
the discrepancy between the two satellites. 
The next stage of our analysis will be to expand the model to the entirety of the 

data available from both satellites. This includes most of the Americas totalling over two 
millions observations each day. It is also of interest to understand if the time of year has 
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Figure 12: Predictions of DHR30 for CONUS from Bivariate Marginal NN-RCM model 

an impact on the discrepancy between the satellites. While we focused on the month of 
July for CONUS, it will be interesting to see how surface albedo is impacted in the winter 
months. 
The implementation of the bivariate model generates an important discussion on the 

handling of missing data and neighborhoods in multivariate nearest-neighbor methods. 
The misalignment of multivariate observations is a key issue for many datasets that had 
not yet been addressed. Similarly, the question of neighborhoods in multivariate models 
can be answered with multiple diferent options. Our implementation for the bivariate 
model concatenates two neighborhoods each based on one source of data. 
Further advancement for the NN-RCM model include improving the distributed imple-

mentations. While the current development relies on parallel methods, divide-and-conquer 
algorithms present stronger opportunities for computational efciency compared the one 
currently implemented. Distributed methods can not only reduce the computing time 
linearly, but also avoid redundancies when it comes to recurring data collection. 

Supplementary Material 

Additional information and supporting material for this article is available online at the 
journal’s website. 
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